Электрический ток в жидкостях — теория, электролиз. Электрический ток в жидкостях: его происхождение, количественные и качественные характеристики Что является носителем электрического тока в жидкостях

То, что жидкости могут отлично проводить электрическую энергию, знают абсолютно все. И также общеизвестным фактом является то, что все проводники по своему типу делятся на несколько подгрупп. Предлагаем рассмотреть в нашей статье, как электрический ток в жидкостях, металлах и прочих полупроводниках проводится, а также законы электролиза и его виды.

Теория электролиза

Чтобы было легче понять, о чем идет речь, предлагаем начать с теории, электричество, если мы рассматриваем электрический заряд, как своего рода жидкость, стало известным уже более 200 лет. Заряды состоят из отдельных электронов, но те, настолько малы, что любой большой заряд ведет себя как непрерывного течения, жидкость.

Как и тела твердого типа, жидкие проводники могут быть трех типов:

  • полупроводниками (селен, сульфиды и прочие);
  • диэлектиками (щелочные растворы, соли и кислоты);
  • проводниками (скажем, в плазме).

Процесс, при котором происходит растворение электролитов и распадение ионов под воздействием электрического молярного поля, называется диссоциация. В свою очередь, доля молекул, которые распались на ионы, либо распавшихся ионов в растворенном веществе, полностью зависит от физических свойств и температуры в различных проводниках и расплавах. Обязательно нужно помнить, что ионы могут рекомбинироваться или вновь объединиться. Если условия не будут меняться, то количество распавшихся ионов и объединившихся будет равно пропорциональным.

В электролитах проводят энергию ионы, т.к. они могут являться и положительно заряженными частицами, и отрицательно. Во время подключения жидкости (или точнее, сосуда с жидкостью к сети питания), начнется движение частиц к противоположным зарядам (положительные ионы начнут притягиваться к катодам, а отрицательные – к анодам). В этом случае, энергию транспортируют непосредственно, ионы, поэтому проводимость такого типа называется – ионной.

Во время этого типа проводимости, ток переносят ионы, и на электродах выделяются вещества, которые являются составляющими электролитов. Если рассуждать с точки зрения химии, то происходит окисление и восстановление. Таким образом, электрический ток в газах и жидкостях транспортируется при помощи электролиза.

Законы физики и ток в жидкостях

Электричество в наших домах и технике, как правило, не передается в металлических проволоках,. В металле электроны могут переходить от атома к атому, и, таким образом нести отрицательный заряд.

Как жидкости, они приводятся в виде электрического напряжения, известного как напряжение, изменяемом в единицах – вольт, в честь итальянского ученого Алессандро Вольта.

Видео: Электрический ток в жидкостях: полная теория

Также, электрический ток течет от высокого напряжения в низкое напряжение и измеряется в единицах, известных как ампер, названных по имени Андре-Мари Ампера. И согласно теории и формулы, если увеличить напряжение тока, то его сила также увеличится пропорционально. Это соотношение известно как закон Ома. Как пример, виртуальная ампермерная характеристика ниже.

Рисунок: зависимость тока от напряжения

Закон Ома (с дополнительными подробностями относительно длины и толщины проволоки), как правило, является одним из первых вещей, преподаваемых в классах, изучающих физику, многие студенты и преподаватели поэтому рассматривают электрический ток в газах и жидкостях как основной закон в физике.

Для того чтобы увидеть своими глазами движение зарядов, нужно приготовить колбу с соленой водой, плоские прямоугольные электроды и источники питания, также понадобится ампермерная установка, при помощи которой будет проводиться энергия от сети питания к электродам.

Рисунок: Ток и соль

Пластины, которые выступают проводниками необходимо опустить в жидкость, и включить напряжение. После этого начнется хаотичное перемещение частиц, но как после возникновения магнитного поля между проводниками, этот процесс упорядочится.

Как только ионы начнут меняться зарядами и объединяться, аноды станут катодами, а катоды – анодами. Но здесь нужно учитывать и электрическое сопротивление. Конечно, не последнюю роль играет теоретическая кривая, но основное влияние – это температура и уровень диссоциации (зависит от того, какие носители будут выбраны), а также выбран переменный ток или постоянный. Завершая это опытное исследование, Вы можете обратить внимание, что на твердых телах (металлических пластинах), образовался тончайший слой соли.

Электролиз и вакуум

Электрический ток в вакууме и жидкостях – это достаточно сложный вопрос. Дело в том, что в таких средах полностью отсутствуют заряды в телах, а значит, это диэлектрик. Иными словами, наша цель – это создание условий, для того, чтобы атом электрона мог начать свое движение.

Для того нужно использовать модульное устройство, проводники и металлические пластины, а далее действовать, как и в методе выше.

Проводники и вакуум Характеристика тока в вакууме

Применение электролиза

Этот процесс применяется практически во всех сферах жизни. Даже самые элементарные работы подчас требуют вмешательства электрического тока в жидкостях, скажем,

При помощи этого простого процесса происходит покрытие твердых тел тончайшим слоем какого-либо металла, например, никелирование иди хромирование Т.е. это один из возможных способов борьбы с коррозийными процессами. Подобные технологии используются в изготовлении трансформаторов, счетчиков и прочих электрических приборов.

Надеемся, наше обоснование ответило на все вопросы, которые возникают, изучая явление электрический ток в жидкостях. Если нужны более качественные ответы, то советуем посетить форум электриков, там Вас с радостью проконсультируют бесплатно.

К жидкостям, являющимся проводниками, относятся расплавы и растворы электролитов, т.е. солей, кислот и щелочей.

При растворении электролитов в воде происходит распад их молекул на ионы – электролитическая диссоциация. Степень диссоциации, т.е. доля в растворенном веществе молекул, распавшихся на ионы, зависит от температуры, концентрации раствора и электрических свойств растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов. Ионы разных знаков при встрече могу снова объединиться в нейтральные молекулы. Такой процесс называется рекомбинация. При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.

Т.о., свободными носителями зарядов в проводящих жидкостях являются положительные и отрицательные ионы. Если в жидкость поместить электроды подключенные к источнику тока, то эти ионы начнут придут в движение. Один из электродов подключен к отрицательному полюсу источника тока – он называется катод – другой подключен к положительному - анод. При подключении к источнику тока ионы в растворе электролита отрицательные ионы начинают двигаться к положительному электроду (аноду), а положительные – соответственно к отрицательному (катоду). То есть установится электрический ток. Такую проводимость в жидкостях называют ионной, так как носителями заряда являются ионы.

При прохождении тока через раствор электролита на электродах происходит выделение вещества, связанное с окислительно-восстановительными реакциями. На аноде отрицательно заряженные ионы отдают свои лишние электроны (окислительная реакция), а на катоде положительные ионы принимают недостающие электроны (восстановительная реакция). Такой процесс называется электролизом.

При электролизе на электродах происходит выделение вещества. Зависимость массы выделившегося вещества m от силы тока, времени прохождения тока и самого вещества установил М.Фарадей. Этот закон можно получить теоретически. Итак, масса выделившегося вещества равна произведению массы одного иона m i на число ионов N i , достигших электрода за время Dt. Масса иона согласно формуле количества вещества равна m i =M/N a , где M – молярная масса вещества, N a – постоянная Авогадро. Число ионов, достигших электрода, равно N i =Dq/q i , где Dq – заряд, прошедший электролит за время Dt (Dq=I*Dt), q i – заряд иона, который определяется валентностью атома (q i = n*e, где n – валентность атома, e – элементарный заряд). При подстановке этих формул получаем, что m=M/(neN a)*IDt. Если обозначить через k (коэффициент пропорциональности) =M/(neN a), то имеем m=kIDt. Это математическая запись первого закона Фарадея – одного из законов электролиза. Масса вещества, выделившегося на электроде за время Dt при прохождении электрического тока, пропорциональна силе тока и этому промежутку времени. Величину k называют электрохимическим эквивалентом данного вещества, который численно равен массе вещества, выделившегося на электродах, при переносе ионами заряда, равного 1 Кл. [k]= 1 кг/Кл. k = M/(neN a) = 1/F*M/n , где F – постоянная Фарадея. F=eN a =9,65*10 4 Кл/моль. Выведенная формула k=(1/F)*(M/n) является вторым законом Фарадея.


Электролиз широко применяется в технике для различных целей, например,так покрывают поверхность одного металла тонким слоем другого (никелирование, хромирование, омеднение и др.). Если обеспечить хорошее отслаивание электролитического покрытия от поверхности, то можно получить копию рельефа поверхности. Этот процесс называется гальванопластика. Также при помощи электролиза осуществляют очистку металлов от примесей, например, толстые листы неочищенной меди, полученной из руды, помещают в ванну в качестве анода. В процессе электролиза медь растворяется, примеси выпадают на дно, а на катоде оседает чистая медь. С помощью электролиза ещё получают электронные платы. На диэлектрик наклеивают тонкую сложную картину соединяющих проводов, затем помещают пластину в электролит, где вытравливаются незакрытые краской участки медного слоя. После этого краска смывается и на плате появляются детали микросхемы.

Электрический ток в газах

Носители заряда: электроны, положительные ионы, отрицательные ионы.

Носители заряда возникают в газе в результате ионизации: вследствие облучения газа, либо столкновений частиц нагретого газа друг с другом.

Ионизация электронным ударом.

A_{поля}=eEl

e=1,6\cdot 10^{19}Кл ;

E - направление поля;

l - длина свободного пробега между двумя последовательными столкновениями электрона с атомами газа.

A_{поля}=eEl\geq W - условие ионизации

W - энергия ионизации, т.е. энергия, необходимая для того, чтобы вырвать из атома электрон

Число электронов увеличивается в геометрической прогрессии, в результате возникает электронная лавина, а следовательно разряд в газе.

Электрический ток в жидкости

Жидкости так же, как и твердые тела могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам - растворы электролитов: кислот, щелочей, солей и расплавы металлов. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов.

Электролитическая диссоциация

При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Например, CuSO_{4}\rightarrow Cu^{2+}+SO^{2-}_{4} .

Наряду с диссоциацией идет обратный процесс - рекомбинация , т.е. объединение ионов противоположных знаков в нейтральные молекулы.

Носителями электричества в растворах электролитов являются ионы. Такая проводимость называется ионной .

Электролиз

Если в ванну с раствором электролита поместить электроды и пустить ток, то отрицательные ионы будут двигаться к положительному электроду, а положительные - к отрицательному.

На аноде (положительном электроде) отрицательно заряженные ионы отдают лишние электроны (окислительная реакция), а на катоде (отрицательном электроде) положительные ионы получают недостающие электроны (восстановительная реакция).

Определение. Процесс выделения на электродах веществ, связанный с окислительно-восстановительными реакциями называется электролизом.

Законы Фарадея

I. Масса вещества, которая выделяется на электроде, прямо пропорциональна заряду, протекшему через электролит:

m=kq

k - электрохимический эквивалент вещества.

q=I\Delta t , тогда

m=kI\Delta t

k=\frac{1}{F}\frac{\mu}{n}

\frac{\mu}{n} - химический эквивалент вещества;

\mu - молярная масса;

n - валентность

Электрохимические эквиваленты веществ пропорциональны химическим.

F - постоянная Фарадея;

Жидкости, как и любые другие вещества, могут быть проводниками, полупроводниками и диэлектриками. Например, дистиллированная вода будет являться диэлектриком, а растворы и расплавы электролитов будут являться проводниками. Полупроводниками будут являться, например, расплавленный селен или расплавы сульфидов.

Ионная проводимость

Электролитическая диссоциация - это процесс распадения молекул электролитов на ионы под действием электрического поля полярных молекул воды. Степенью диссоциации называется доля молекул распавшихся на ионы в растворенном веществе.

Степень диссоциации будет зависеть от различных факторов: температура, концентрация раствора, свойства растворителя. При увеличении температуры, степень диссоциации тоже будет увеличиваться.

После того как молекулы разделились на ионы, они движутся хаотично. При этом два иона разных знаков могут рекомбинироваться, то есть снова объединиться в нейтральные молекулы. При отсутствии внешних изменений в растворе должно установиться динамическое равновесие. При нем число молекул которое распалось на ионы за единицу времени, будет равняться числу молекул, которые снова объединятся.

Носителями зарядов в водных растворах и расплавах электролитов будут являться ионы. Если сосуд с раствором или расплавом включить в цепь, то положительно заряженные ионы начнут двигаться к катоду, а отрицательные – к аноду. В результате этого движения возникнет электрический ток. Данный вид проводимости называют ионной проводимостью.

Помимо ионной проводимости в жидкостях может обладать и электронной проводимостью. Такой тип проводимости свойственен, например, жидким металлам. Как отмечалось выше, при ионной проводимости прохождение тока связано с переносом вещества.

Электролиз

Вещества которые входят в состав электролитов, будут оседать на электродах. Этот процесс называется в электролизом. Электролиз – процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями.

Электролиз нашел широкое применение в физике и технике. С помощью электролиза поверхность одного металла покрывают тонким слоем другого металла. Например, хромирование и никелирование.

С помощью электролиза можно получить копию с рельефной поверхности. Для этого необходимо, чтобы слой металла, который осядет на поверхности электрода, легко можно было снять. Для этого иногда на поверхность наносят графит.

Процесс получения таких легко отслаиваемых покрытий получил название гальвано-пластика. Этим метод разработал русский ученый Борис Якоби при изготовлении полых фигур для Исаакиевского собора с Санкт-Петербурге.

Электронный ток в жидкостях


В железном проводнике электронный ток появляется направленным движением свободных электронов и что при всем этом никаких конфигураций вещества, из которого проводник изготовлен, не происходит.

Такие проводники, в каких прохождение электронного тока не сопровождается хим переменами их вещества, именуются проводниками первого рода . К ним относятся все металлы, уголь и ряд других веществ.

Но есть в природе и такие проводники электронного тока, в каких во время прохождения тока происходят хим явления. Эти проводники именуются проводниками второго рода . К ним относятся приемущественно разные смеси в воде кислот, солей и щелочей.

Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (либо какой-нибудь другой кислоты либо щелочи), а потом взять две железные пластинки и присоединить к ним проводники опустив эти пластинки в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, при этом оно будет длиться безпрерывно, пока замкнута цепь т.к. подкисленная вода вправду является проводником. Не считая того, пластинки начнут покрываться пузырьками газа. Потом эти пузырьки будут отрываться от пластинок и выходить наружу.

При прохождении по раствору электронного тока происходят хим конфигурации, в итоге которых выделяется газ.

Проводники второго рода именуются электролитами , а явление, происходящее в электролите при прохождении через него электронного тока, - .

Железные пластинки, опущенные в электролит, именуются электродами; одна из их, соединенная с положительным полюсом источника тока, именуется анодом , а другая, соединенная с отрицательным полюсом,- катодом .

Чем все-таки обусловливается прохождение электронного тока в водянистом проводнике? Оказывается, в таких смесях (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в этом случае воды) распадаются на две составные части, при этом одна частичка молекулы имеет положительный электронный заряд, а другая отрицательный.

Частички молекулы, владеющие электронным зарядом, именуются ионами . При растворении в воде кислоты, соли либо щелочи в растворе появляется огромное количество как положительных, так и отрицательно заряженных ионов.

Сейчас должно стать понятным, почему через раствор прошел электронный ток, ведь меж электродами, соединенными с источником тока, сотворена разность потенциалов, по другому говоря, какой-то из них оказался заряженным положительно, а другой негативно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду - катоду, а отрицательные ионы - к аноду.

Таким макаром, хаотическое движение ионов стало упорядоченным встречным движением отрицательно заряженных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электронного тока через электролит и происходит до того времени, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.

В качестве примера разглядим явление электролиза при пропускании электронного тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

Явление электролиза при прохождении тока через раствор медного купороса: С — сосуд с электролитом, Б - источник тока, В - выключатель

Тут также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным - ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к для себя недостающие электроны), т. е. преобразовываться в нейтральные молекулы незапятанной меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.

Отрицательные ионы, достигнув анода, также разряжаются (отдают лишние электроны). Но при всем этом они вступают в хим реакцию с медью анода, в итоге чего к кислотному остатку SO4 присоединяется молекула меди Сu и появляется молекула медного купороса СuS О4 , возвращаемая назад электролиту.

Потому что этот хим процесс протекает долгое время, то на катоде отлагается медь, выделяющаяся из электролита. При всем этом электролит заместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода - анода.

Тот же самый процесс происходит, если заместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса Zn SO4. Цинк также будет переноситься с анода на катод.

Таким макаром, разница меж электронным током в металлах и водянистых проводниках состоит в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах электричество переносится разноименно заряженными частичками вещества - ионами, двигающимися в обратных направлениях. Потому молвят, что электролиты владеют ионном проводимостью.

Явление электролиза было открыто в 1837 г. Б. С. Якоби, который создавал бессчетные опыты по исследованию и усовершенствованию хим источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электронного тока покрывается медью.

Это явление, нареченное гальванопластикой , находит на данный момент очень огромное практическое применение. Одним из примеров тому может служить покрытие железных предметов узким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.

Газы (в том числе и воздух) в обыденных критериях не проводят электронный ток. К примеру, нагие провода воздушных линий, будучи подвешены параллельно друг дружке, оказываются изолированными один от другого слоем воздуха.

Но под воздействием высочайшей температуры, большой разности потенциалов и других обстоятельств газы, подобно водянистым проводникам, ионизируются , т. е. в их возникают в большенном количестве частички молекул газа, которые, являясь переносчиками электричества, содействуют прохождению через газ электронного тока.

Но совместно с тем ионизация газа отличается от ионизации водянистого проводника. Если в воды происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.

Стоит только закончить ионизацию газа, как он закончит быть проводящим, тогда как жидкость всегда остается проводником электронного тока. Как следует, проводимость газа - явление временное, зависящее от деяния наружных обстоятельств.

Но есть и другой вид разряда, именуемый дуговым разрядом либо просто электронной дугой. Явление электронной дуги было открыто сначала 19-го столетия первым русским электротехником В. В. Петровым.

В. В. Петров, проделывая бессчетные опыты, нашел, что меж 2-мя древесными углями, соединенными с источником тока, появляется непрерывный электронный разряд через воздух, сопровождаемый броским светом. В собственных трудах В. В. Петров писал, что при всем этом «черный покой довольно ярко освещен может быть». Так в первый раз был получен электронный свет, фактически применил который очередной российский ученый-электротехник Павел Николаевич Яблочков.

«Свеча Яблочкова», работа которой базирована на использовании электронной дуги, сделала в те времена реальный переворот в электротехнике.

Дуговой разряд применяется как источник света и в наши деньки, к примеру в прожекторах и проекционных аппаратах. Высочайшая температура дугового разряда позволяет использовать его для устройства дуговой печи. В текущее время дуговые печи, питаемые током очень большой силы, используются в ряде областей индустрии: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд в первый раз был применен для резки и сварки металла.

В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электрических и ионных пучков употребляется так именуемый тлеющий газовый разряд .

Искровой разряд применяется для измерения огромных разностей потенциалов при помощи шарового разрядника, электродами которого служат два железных шара с полированной поверхностью. Шары раздвигают, и на их подается измеряемая разность потенциалов. Потом шары сближают до того времени, пока меж ними не перескочит искра. Зная поперечник шаров, расстояние меж ними, давление, температуру и влажность воздуха, находят разность потенциалов меж шарами по особым таблицам. Этим способом можно определять с точностью до нескольких процентов разности потенциалов порядка 10-ов тыщ вольт.

Это пока все. Ну а если Вы желаете выяснить больше, то рекомендую направить внимание на диск Миши Ванюшина:

«Про электричество для начинающих в видео формате на DVD-диске»